RSS

Tugas Statistika

Tugas Tgl,

Data, Initial Calculations, and ANOVA Summary Table for the Test of the Hypothesis

<!–[if gte msEquation 12]>H0 :μZ= μM= μH <![endif]–> , Using Repeated Measures

Subject

Reading Score For dosage of drug

Total (Xsubjek)

X2subj

<!–[if gte msEquation 12]>Xsubj<![endif]–>

Zero

Moderate

High

1

35

60

30

125

15,625

41.67

2

23

55

20

98

9,604

32.67

3

30

65

25

120

11,400

40.00

4

40

45

45

130

16,900

43.33

5

50

80

40

170

28,900

56.67

6

35

75

40

150

22,500

50.00

7

30

63

25

118

13,924

39.33

8

25

35

30

90

8,100

30.00

9

43

75

60

178

31,684

59.33

10

15

58

25

98

9,604

32.67

11

45

80

35

160

25,600

53.33

12

25

65

33

123

15,129

41.00

<!–[if gte msEquation 12]>X=396<![endif]–>

756

408

1560

211,970

<!–[if gte msEquation 12]>X=33<![endif]–>

<!–[if gte msEquation 12]>X=63<![endif]–>

<!–[if gte msEquation 12]>X=34<![endif]–>

n = 12

n = 12

n = 12

<!–[if gte msEquation 12]>X<![endif]–> = 43.33

SOURCE

df

SS

S2

F

Subjects

11

3,056.03

277.82

Between groups

2

6,968.00

3,484.00

50.23

Residual

22

1,525.97

69.36

Total

35

11,550.00

Dari data pada table diatas dilakukan :

1. Uji LSD (BNT)

<!–[if gte msEquation 12]>S2=69.36<![endif]–>

· Perlakuan 1 dan perlakuan 2

Untuk <!–[if gte msEquation 12]>α=0.05<![endif]–>

<!–[if gte msEquation 12]>Y1Y2 = 33-63=30<![endif]–>

<!–[if gte msEquation 12]>tα2 SY1Y2 = t0.025 S2r<![endif]–>

<!–[if gte msEquation 12]>=2.030 2 (69.36)12 =6.902<![endif]–>

Karena <!–[if gte msEquation 12]>Y1Y2 = 33-63=30<![endif]–> <!–[if gte msEquation 12]><![endif]–> <!–[if gte msEquation 12]>tα2 SY1Y2 =6.902<![endif]–> maka perlakuan 1 dan perlakuan 2 dinyatakan berbeda.

· Perlakuan 1 dan perlakuan 3

Untuk <!–[if gte msEquation 12]>α=0.05<![endif]–>

<!–[if gte msEquation 12]>Y1Y3 = 33-34=1<![endif]–>

<!–[if gte msEquation 12]>tα2 SY1Y2 = t0.025 S2r<![endif]–>

<!–[if gte msEquation 12]>=2.030 2 (69.36)12 =6.902<![endif]–>

Karena <!–[if gte msEquation 12]>Y1Y3 = 33-34=1<![endif]–> <!–[if gte msEquation 12]><<![endif]–> <!–[if gte msEquation 12]>tα2 SY1Y2 =6.902<![endif]–> maka perlakuan 1 dan perlakuan 3 dinyatakan tidak berbeda (sama).

· Perlakuan 2 dan perlakuan 3

Untuk <!–[if gte msEquation 12]>α=0.05<![endif]–>

<!–[if gte msEquation 12]>Y2Y3 = 63-34=29<![endif]–>

<!–[if gte msEquation 12]>tα2 SY1Y2 = t0.025 S2r<![endif]–>

<!–[if gte msEquation 12]>=2.030 2 (69.36)12 =6.902<![endif]–>

Karena <!–[if gte msEquation 12]>Y2Y3 = 63-34=29<![endif]–> <!–[if gte msEquation 12]><![endif]–> <!–[if gte msEquation 12]>tα2 SY1Y2 =6.902<![endif]–> maka perlakuan 2 dan perlakuan 3 dinyatakan berbeda.

2. KONTRAS ORTOGONAL

<!–[if gte msEquation 12]>s2=69.36<![endif]–>

<!–[if gte msEquation 12]>H0 : μ1= μ3<![endif]–>

<!–[if gte msEquation 12]>H0 : μ1+ μ3= 2<![endif]–>

(Q1) = 1* 33 + 0 + (-1)*34 = -1

(Q2) = -1*33 + 2*63 + (-1)*34 = 59

<!–[if gte msEquation 12]>SQ1=sCi2/r <![endif]–> = 3.40

<!–[if gte msEquation 12]>SQ2=sCi2/r <![endif]–> = 5.89

<!–[if gte msEquation 12]>SSQ1= Q12rCi2 = -121212 +120+ 1212 =0.042<![endif]–>

<!–[if gte msEquation 12]>SSQ2= Q22rCi2 = 59212-12 +1222+ 12-12 =48.347<![endif]–>

<!–[if gte msEquation 12]>F= SSQ1S2= 0.04269.34<![endif]–> = 0.0006

<!–[if gte msEquation 12]>F= SSQ2S2= 48.34769.34<![endif]–> = 0.697

Berdasarkan table <!–[if gte msEquation 12]>F1 , 22 α=0.05 =4.30<![endif]–>

Karena <!–[if gte msEquation 12]>Fhit < <![endif]–> <!–[if gte msEquation 12]>F1 , 11 α=0.05 <![endif]–> , maka terima <!–[if gte msEquation 12]>H0<![endif]–>

3. TUKEY PROCEDURE

<!–[if gte msEquation 12]>s2=69.36<![endif]–>

<!–[if gte msEquation 12]>α=0.05<![endif]–> <!–[if gte msEquation 12]>W= qα p. feSY<![endif]–>

Dari table <!–[if gte msEquation 12]>q0.05 3, 22=3.555, maka <![endif]–> :

<!–[if gte msEquation 12]>W=3.555* 69.36 <![endif]–> = 29.607

<!–[if gte msEquation 12]>μ1μ2= 33-63 =30 >W=29.607<![endif]–> , artinya <!–[if gte msEquation 12]>μ1μ2<![endif]–>

<!–[if gte msEquation 12]>μ1μ3= 33-34 =1 < W=29.607<![endif]–> , artinya <!–[if gte msEquation 12]>μ1= μ3<![endif]–>

<!–[if gte msEquation 12]>μ2μ3= 63-34 =29 <W=29.607<![endif]–> , artinya <!–[if gte msEquation 12]>μ2= μ3<![endif]–>

4. DMRT

<!–[if gte msEquation 12]>s2=69.36<![endif]–>

<!–[if gte msEquation 12]>α=0.05<![endif]–>

<!–[if gte msEquation 12]>Rp= qα SY<![endif]–> <!–[if gte msEquation 12]>α=1- 1- αp-1<![endif]–>

<!–[if gte msEquation 12]>α=1- 1- 0.052-1<![endif]–> = 0.05

<!–[if gte msEquation 12]>q0.05 2, 22=2.935<![endif]–>

<!–[if gte msEquation 12]>Rp=2.935 (69.36 )<![endif]–> =24.44

 

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

 
%d blogger menyukai ini: